Blogia

aguilarS5a

investigacion3

Unidad de disco duro:

Los discos duros se presentan recubiertos de una capa magnética delgada, habitualmente de óxido de hierro, y se dividen en unos círculos concéntricos cilindros (coincidentes con las pistas de los disquetes), que empiezan en la parte exterior del disco (primer cilindro) y terminan en la parte interior (último). Asimismo estos cilindros se dividen en sectores, cuyo número esta determinado por el tipo de disco y su formato, siendo todos ellos de un tamaño fijo en cualquier disco. Cilindros como sectores se identifican con una serie de números que se les asignan, empezando por el 1, pues el numero 0 de cada cilindro se reserva para propósitos de identificación mas que para almacenamiento de datos. Estos, escritos/leídos en el disco, deben ajustarse al tamaño fijado del almacenamiento de los sectores. Habitualmente, los sistemas de disco duro contienen más de una unidad en su interior, por lo que el número de caras puede ser más de 2. Estas se identifican con un número, siendo el 0 para la primera. En general su organización es igual a los disquetes. La capacidad del disco resulta de multiplicar el número de caras por el de pistas por cara y por el de sectores por pista, al total por el número de bytes por sector.

Para escribir, la cabeza se sitúa sobre la celda a grabar y se hace pasar por ella un pulso de corriente, lo cual crea un campo magnético en la superficie. Dependiendo del sentido de la corriente, así será la polaridad de la celda. ara leer, se mide la corriente inducida por el campo magnético de la celda. Es decir que al pasar sobre una zona detectará un campo magnético que según se encuentre magnetizada en un sentido u otro, indicará si en esa posición hay almacenado un 0 o un 1. En el caso de la escritura el proceso es el inverso, la cabeza recibe una corriente que provoca un campo magnético, el cual pone la posición sobre la que se encuentre la cabeza en 0 o en 1 dependiendo del valor del campo magnético provocado por dicha corriente.

Los componentes físicos de una unidad de disco duro son:

LOS DISCOS (Platters)

Están elaborados de compuestos de vidrio, cerámica o aluminio finalmente pulidos y revestidos por ambos lados con una capa muy delgada de una aleación metálica. Los discos están unidos a un eje y un motor que los hace guiar a una velocidad constante entre las 3600 y 7200 RPM. Convencionalmente los discos duros están compuestos por varios platos, es decir varios discos de material magnético montados sobre un eje central. Estos discos normalmente tienen dos caras que pueden usarse para el almacenamiento de datos, si bien suele reservarse una para almacenar información de control.

LAS CABEZAS (Heads)

Están ensambladas en pila y son las responsables de la lectura y la escritura de los datos en los discos. La mayoría de los discos duros incluyen una cabeza Lectura/Escritura a cada lado del disco, sin embargo algunos discos de alto desempeño tienen dos o más cabezas sobre cada superficie, de manera que cada cabeza atiende la mitad del disco reduciendo la distancia del desplazamiento radial. Las cabezas de Lectura/Escritura no tocan el disco cuando este esta girando a toda velocidad; por el contrario, flotan sobre una capa de aire extremadamente delgada(10 millonésima de pulgada). Esto reduce el desgaste en la superficie del disco durante la operación normal, cualquier polvo o impureza en el aire puede dañar suavemente las cabezas o el medio. Su funcionamiento consiste en una bobina de hilo que se acciona según el campo magnético que detecte sobre el soporte magnético, produciendo una pequeña corriente que es detectada y amplificada por la electrónica de la unidad de disco.

EL EJE

Es la parte del disco duro que actúa como soporte, sobre el cual están montados y giran los platos del disco.

"ACTUADOR" (actuator)

Es un motor que mueve la estructura que contiene las cabezas de lectura entre el centro y el borde externo de los discos. Un "actuador" usa la fuerza de un electromagneto empujado contra magnetos fijos para mover las cabezas a través del disco. La controladora manda más corriente a través del electromagneto para mover las cabezas cerca del borde del disco. En caso de una perdida de poder, un resorte mueve la cabeza nuevamente hacia el centro del disco sobre una zona donde no se guardan datos. Dado que todas las cabezas están unidas al mismo "rotor" ellas se mueven al unísono. Mientras que lógicamente la capacidad de un disco duro puede ser medida según los siguientes parámetros:

Cilindros (cylinders)

El par de pistas en lados opuestos del disco se llama cilindro. Si el HD contiene múltiples discos (sean n), un cilindro incluye todos los pares de pistas directamente uno encima de otra (2n pistas). Los HD normalmente tienen una cabeza a cada lado del disco. Dado que las cabezas de Lectura/Escritura están alineadas unas con otras, la controladora puede escribir en todas las pistas del cilindro sin mover el rotor. Como resultado los HD de múltiples discos se desempeñan levemente más rápido que los HD de un solo disco.

Pistas (tracks)

Un disco está dividido en delgados círculos concéntricos llamados pistas. Las cabezas se mueven entre la pista más externa ó pista cero a la mas interna. Es la trayectoria circular trazada a través de la superficie circular del plato de un disco por la cabeza de lectura / escritura. Cada pista está formada por uno o más Cluster.

Sectores (sectors)

Un byte es la unidad útil más pequeña en términos de memoria. Los HD almacenan los datos en pedazos gruesos llamados sectores. La mayoría de los HD usan sectores de 512 bytes. La controladora del H D determina el tamaño de un sector en el momento en que el disco es formateado. Algunos modelos de HD le permiten especificar el tamaño de un sector. Cada pista del disco esta dividida en 1 ó 2 sectores dado que las pistas exteriores son más grandes que las interiores, las exteriores contienen mas sectores.

 
   

capacidad

La capacidad de un disco duro que suele venir en un ordenador de sobremesa cuando lo compramos, ha variado a lo largo de los últimos años aumentando considerablemente. Hasta no hace mucho, lo normal eran entre 10 y 40 gigabytes, pero hoy en día hablar de 250 gigabytes es incluso quedarse corto. Digamos que la capacidad es el número de bytes que puede guardar. Los datos son almacenados en el disco duro en forma de ficheros. Un fichero es simplemente una colección de bytes. Estos bytes pueden ser códigos ASCII para los caracteres de un fichero de texto, pueden ser las instrucciones de una aplicación de software para que lo ejecute el ordenador, también puede ser la información guardada de una base de datos, o simplemente lo colores de una imagen digital. Independientemente de lo que contenga, un fichero es en esencia una cadena de bytes. Cuando un programa que está funcionando en un ordenador pide acceso a un fichero, el disco duro recupera estos bytes y los envía a la CPU, uno cada vez.

Velocidad de Transferencia


    -MbpsMbps Megabits por segundo. Unidad de medida de la velocidad de transmisión por una línea de telecomunicación. Cada megabit esta formado por un millón de bits....

    -Velocidad de RotaciónVelocidad de Rotación Es la velocidad a la que giran los discos que forma el disco duro. La de 7.000 rpm es aceptable, pero ya existen discos duros que giran...

    -TransferenciaTransferencia (Transfer). Enviar datos a través de un canal de computador o bus. La “transferencia” por lo general se aplica a la transmisión dentro del sistema de computador, mientras que...

    -BPSBPS Bits por segundo. (Ver Baudio). La velocidad de transferencia de los modems se mide en bits pos segundo....

    -Fast EthernetFast Ethernet Ethernet de alta velocidad a 100 Mbps (la Ethernet regular es de 10 Mbps). Existen dos tecnologías competidoras que surgen del IEEE. El primer método es el IEEE...

Tiempos de acceso, Velocidades y su medición

Existen una serie de Factores de Velocidad relacionados con los discos duros que son necesarios conocer para comprender su funcionamiento y sus diferencias.

· Tiempo de búsqueda de pista a pista : intervalo de tiempo necesario para desplazar la cabeza de lectura y escritura desde una pista a otra adyacente.

· Tiempo medio de acceso : tiempo que tarda, como media, para desplazarse la cabeza a la posición actual. Este tiempo promedio para acceder a una pista arbitraria es equivalente al tiempo necesario para desplazarse sobre 1/3 de las pistas del disco duro. El antiguo IBM PC/XT utilizaba discos de 80 a 110 milisegundos, mientras que los AT usaban discos de 28 a 40 milisegundos, y los actuales sistemas 386, 486 y PENTIUMÒ usan discos de menos de 20 milisegundos.

· Velocidad de Rotación: Número de vueltas por minuto (RPM) que da el disco.

· Latencia Promedio : Es el promedio de tiempo para que el disco una vez en la pista correcta encuentre el sector deseado, es decir el tiempo que tarda el disco en dar media vuelta. Velocidad de transferencia : velocidad a la que los datos (bits) pueden transferirse desde el disco a la unidad central. Depende esencialmente de dos factores : la velocidad de rotación y la densidad de almacenamiento de los datos en una pista

3600 rpm = 1 revolución cada 60/3600 segundos (16,66 milisegundos)

Si calculamos el tiempo de ½ vuelta --> Latencia Promedio 8,33 milisegundos

Una comparativa entre un disquete y un disco duro de todos estos Factores mencionados anteriormente sería:

 

 

T.Pista

T.MAcceso

Rotación

Latencia

V.Transfrencia

FD 360k

HD AT 30

6-12 mls

8-10 mls

93 mls

40-28 mls

300 rpm

3600 rpm

100 mls

8,3 mls

125-250 Kb / seg

1-5 Mb / seg

El tiempo de búsqueda depende del tamaño de la unidad (2", 3"½, 5"¼), del número de pistas por pulgada (que a su vez depende de factores como el tamaño de los dominios magnéticos) y de la velocidad y la precisión de los engranajes del cabezal. La latencia depende de la velocidad de rotación y equivale a la mitad del tiempo que tarda el disco en describir un giro completo. El rendimiento total también depende de la disposición de los dominios magnéticos, uso de ZBR.

Para mejorar el tiempo de acceso se reduce esa latencia acelerando la rotación del disco o velocidad de eje. Hace unos años todos los discos duros giraban a la misma velocidad unos 3600 rpm, la latencia resultante era de 8,3 milisegundos. Hoy las unidades de disco más rápidas para PC giran a 5400 rpm (un 50% más rápidas) y por tanto su latencia es de 5,6 milisegundos. Algunos discos siguen usando los 3600 rpm para consumir menos energía.

 

RPM

1 Vuelta cada

Latencia

3600

16,66 mseg.

8,33 mseg.

4500

13,33 mseg.

6,66 mseg.

5400

11,11 mseg.

5,55 mseg.

7200

8,33 mseg.

4,16 mseg.

10000

6,00 mseg.

3,00 mseg.

El trabajar a velocidades elevadas plantea varios problemas: El primer problema es que a esta velocidad la disipación del calor se concierte en un problema. El segundo es que exige a usar nuevos motores articulados pro fluidos para los engranajes, los actuales motores de cojinetes no pueden alcanzar estas velocidades sin una reducción drástica de fiabilidad, se quemarían demasiado rápido.

Además de todas estas características de velocidades y tiempos de acceso de los discos duros existen una serie de técnicas que nos permiten aminorar los accesos a disco así como acelerar las transferencias de datos entre el sistema y el dispositivo en cuestión. Una de las técnicas más conocidas en la informática para hacer esto es la del uso de memorias intermedias, buffers o cachés.

investigacion 2

regulador de Voltaje

Un regulador de Voltaje (también llamado estabilizador de voltaje o acondicionador de voltaje) es un equipo eléctrico que acepta una tensión eléctrica de voltaje variable a la entrada, dentro de un parámetro predeterminado y mantiene a la salida una tensión constante (regulada).

Son diversos tipos de reguladores de voltaje, los más comunes son de dos tipos: para uso doméstico o industrial. Los primeros son utilizados en su mayoría para proteger equipo de cómputo, video, o electrodomésticos. Los segundos protegen instalaciones eléctricas completas, aparatos o equipo eléctrico sofisticado, fabricas, entre otros. El costo de un regulador de voltaje estará determinado en la mayoría de los casos por su calidad y vida útil en funcionamiento continuo.

Proceso de rectificación

La corriente y voltaje que las compañías distribuyen a nuestras casas, comercios u otros es corriente alterna. Para que los artefactos electrónicos que allí tenemos puedan funcionar adecuadamente, la corriente alterna debe de convertirse en corriente continua.

Para realizar esta operación se utilizan diodos semiconductores que conforman circuitos rectificadores. Inicialmente se reduce el voltaje de la red (110 / 220 voltios AC u otro) a uno más bajo como 12 o 15 Voltios AC con ayuda de un transformador. A la salida del transformador se pone el circuito rectificador.

La tensión en el secundario del transformador es alterna, y tendrá un semiciclo positivo y uno negativo.

Fuente de alimentación

En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).

Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, pero sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de las misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.

investigacion 1 (part3)

 

tierra física

Una tierra física se define como un sistema de conexión formado por electrodos y líneas de tierra de una instalación eléctrica.
Generalmente el término es usado para hacer referencia a una red o conexión de seguridad que debe instalarse en los centros de trabajo o en cualquier lugar donde se tenga equipo eléctrico o electrónico, ya que de improviso surgen descargas ya sean por fenómenos naturales como los rayos o artificiales como sobre cargas, interferencias o incluso errores humanos, es por eso que una instalación de puesta a tierra tiene como función forzar  o drenar al terreno las intensidades de corriente nocivas que se puedan originar.
En pocas palabras consiste en la conexión de equipos eléctricos u electrónicos a tierra, esto es pasando por el cable hasta llegar al terreno donde se encuentra una pieza de metal llamada electrodo en donde se hace la conexión mediante la cual circula la corriente no deseada o las descargas eléctrica evitando que se dañen aparatos, maquinaria o personas.
Las tierras físicas tienen una importancia vital para proteger el equipo eléctrico y electrónico y se hace mediante una conexión que permiten dar seguridad patrimonial y humana, ya que de improvisto pueden surgir descargas, sobrecargas o interferencias que dañan severamente el equipo.

Su principal función es forzar o drenar al terreno las intensidades de corriente que se puedan originar por cortocircuito, por inducción o por alguna descarga atmosférica.

Instalación de Tierra física

La instalación a Tierra física se realiza en el terreno inmediato donde se hizo la instalación del equipo con la finalidad de que al originarse las descargas ya mencionadas, estas sean confinadas en forma de ondas para que se dispersen en el terreno subyacente y la carga que fluye hacia la tierra física se disipe.
Una instalación de tierra física idealmente interconecta las redes eléctricas, la estructura metálica del edificio, las tuberías metálicas y pararrayos.
El tipo de instalación dependerá del tipo de terreno y el uso de energía de cada lugar.

Tomacorrientes aterrizado, enchufe con tierra fisicaEl tercer cable de tierras físicas

El concepto de tierra física se aplica concretamente a un tercer cable o alambre conductor que va conectado a la tierra o al suelo, éste se conecta en el tercer conector de los tomacorrientes a los que se le llama polarizados. En si, una tierra física es todo un conjunto de elementos necesarios para una adecuada instalación.
La tierra física protegerá a todo el equipo conectado a un tomacorriente de cualquier sobrecarga que se pudiera originar y así mismo brindará seguridad y tranquilidad a los habitantes de la casa.
Es importante mencionar al hablar de tierras físicas que sobre todo se busca el máximo aprovechamiento de la potencia de entrada a los aparatos y equipos, así como la compatibilidad y acoplamiento efectivo entre las fuentes de energía y las cargas eléctricas ya que es común encontrar.

Clavija Sin tierra Fisica
Clavija Sin tierra física
Clavija Con tercer cable cortado irresponsablemente
Clavija Con tercer cable cortado irresponsablemente
Clavija con tierra fisica, correctamente terrizada
Clavija con tierra física, correctamente aterrizada

Ventajas del sistema de puesta a tierra

Correcto funcionamiento de los equipos eléctricos, electrónicos y todo lo relacionado con las instalaciones eléctricasAl implementar el sistema de tierras físicas se tiene la gran ventaja de mejorar el funcionamiento de los equipos eléctricos, electrónicos y todo lo relacionado con las instalaciones eléctricas, además se protegen zonas de alto riesgo o zonas con manejo de alto voltaje como edificios públicos o privados como hospitales, hoteles, cines, donde hay personas que pudieran resultar lesionadas sin el sistema de tierra física.
Así mismo, al proteger el equipo electromecánico, maquinaria-herramientas, motores y controles, se obtiene un incremento en la seguridad del centro de trabajo, ahorro de energía, mayor calidad y tiempo de vida en los aparatos, atenuación del ruido disminución de calentamiento en motores y cables, disminución en fallas y descomposturas del equipo.
Los objetivos que persigue un sistema de puesta a tierra son muchos, en especial el de brindar seguridad a las personas, proteger las instalaciones, los equipos, maquinarias, facilitar y garantizar la correcta operación de los dispositivos de protección, asegurar ventajas en los centros de trabajo y la vida de los equipos, establecer la permanencia de un potencial de referencia al estabilizar la tensión eléctrica a tierra bajo las condiciones normales de la operación.

Beneficios de la tierra física

Existen muchos entre los que destacan el incremento en la seguridad en los centros de trabajo, además de que disminuye el calentamiento en los  motores y cables, también se incrementa el tiempo de vida en los equipos y aparatos y disminuye el consumo en la energía eléctrica.
Además mejora considerablemente la calidad del servicio, se disipa la corriente asociada a descargas atmosféricas y limita las sobre tensiones generadas.

Así mismo, al instalar un sistema de puesta a tierra o tierra física se evita que las descargas atmosféricas (rayos) caigan en lugares indeseados y puedan causar accidentes, así que mediante un sistema de pararrayos conectado directo a tierra se proporciona un camino para guiar al rayo y evitar que caiga en un lugar indeseado.

 

investigacion 1 (part 2)

CORRIENTE DIRECTA o CONTINUA

 

 

 

La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.

 


Fuentes suministradoras de corriente directa o continua. A la izquierda, una batería de las comúnmente utilizada en los coches y todo tipo de vehículo motorizado. A la derecha, pilas de amplio uso, lo mismo en linternas que en aparatos y dispositivos eléctricos y electrónicos.

Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.



El movimiento de las cargas eléctricas se asemeja al de las moléculas de un líquido, cuando al ser  impulsadas por una bomba circulan a través de la tubería de un circuito hidráulico cerrado.


Las cargas eléctricas se pueden comparar con el líquido contenido en la tubería de una instalación hidráulica. Si la función de una bomba hidráulica es poner en movimiento el líquido contenido en una tubería, la función de la tensión o voltaje que proporciona la fuente de fuerza electromotriz (FEM) es, precisamente, bombear o poner en movimiento las cargas contenidas en el cable conductor del circuito eléctrico. Los elementos o materiales que mejor permiten el flujo de cargas eléctricas son los metales y reciben el nombre de “conductores”.

Como se habrá podido comprender, sin una tensión o voltaje ejerciendo presión sobre las cargas eléctricas no puede haber flujo de corriente eléctrica. Por esa íntima relación que existe entre el voltaje y la corriente generalmente en los gráficos de corriente directa, lo que se representa por medio de los ejes de coordenadas es el valor de la tensión o voltaje que suministra la fuente de FEM.



 

Circuito eléctrico compuesto por una pila o fuente de suministro de FEM; una bombilla, carga o<.consumidor conectada al circuito  y  los  correspondientes  conductores  o  cables  por  donde  fluye  la.<corriente eléctrica. A la derecha aparece la representación gráfica del suministro de 1,5 volt de la pila<(eje. de coordenadas "y") y el tiempo que permanece  la pila suministrando corriente a la bombilla.<(representado por el eje de coordenadas "x").


La coordenada horizontal “x” representa el tiempo que la corriente se mantiene fluyendo por circuito eléctrico y la coordenada vertical “y” corresponde al valor de la tensión o voltaje que suministra la fuente de fem (en este caso una pila) y se aplica circuito. La representación gráfica del voltaje estará dada entonces por una línea recta horizontal continua, siempre que el valor de la tensión o voltaje se mantenga constante durante todo el tiempo.




Normalmente cuando una pila se encuentra completamente cargada suministra una FEM, tensión o voltaje de 1,5 volt. Si representamos gráficamente el valor de esa tensión o voltaje durante el tiempo que la corriente se mantiene fluyendo por el circuito cerrado, obtenemos una línea recta.

Si después hacemos girar la pila invirtiendo su posición y representamos de nuevo el valor de la tensión o voltaje, el resultado sería el mismo, porque en ambos casos la corriente que suministra la fuente de FEM sigue siendo directa o continua. Lo único que ha cambiado es el sentido del flujo de corriente en el circuito, provocado por el cambio de posición de la pila, aunque en ambos casos el sentido de circulación de la corriente seguirá siendo siempre del polo negativo al positivo.

investigacion 1 (part1)

LA CORRIENTE ALTERNA (C.A.)

Además de la existencia de fuentes de FEM de corriente directa o continua (C.D.) (como la que suministran las pilas o las baterías, cuya tensión o voltaje mantiene siempre su polaridad fija), se genera también otro tipo de corriente denominada alterna (C.A.), que se diferencia de la directa por el cambio constante de polaridad que efectúa por cada ciclo de tiempo.

 

Una pila o batería constituye una fuente de suministro de corriente directa, porque su polaridad se mantiene siempre fija.

 


La característica principal de una corriente alterna es que durante un instante de tiempo un polo es negativo y el otro positivo, mientras que en el instante siguiente las polaridades se invierten tantas veces como ciclos por segundo o hertz posea esa corriente. No obstante, aunque se produzca un constante cambio de polaridad, la corriente siempre fluirá del polo negativo al positivo, tal como ocurre en las fuentes de FEM que suministran corriente directa.

Veamos un ejemplo práctico que ayudará a comprender mejor el concepto de corriente alterna:

 

Corriente alterna pulsante de un ciclo por segundo o hertz (Hz) .

 


Si hacemos que la pila del ejemplo anterior gire a una determinada velocidad, se producirá un cambio constante de polaridad en los bornes donde hacen contacto los dos polos de dicha pila. Esta acción hará que se genere una corriente alterna tipo pulsante, cuya frecuencia dependerá de la cantidad de veces que se haga girar la manivela a la que está sujeta la pila para completar una o varias vueltas completas durante un segundo.

En este caso si hacemos una representación gráfica utilizando un eje de coordenadas para la tensión o voltaje y otro eje para el tiempo en segundos, se obtendrá una corriente alterna de forma rectangular o pulsante, que parte primero de cero volt, se eleva a 1,5 volt, pasa por “0” volt, desciende para volver a 1,5 volt y comienza a subir de nuevo para completar un ciclo al pasar otra vez por cero volt.

Si la velocidad a la que hacemos girar la pila es de una vuelta completa cada segundo, la frecuencia de la corriente alterna que se obtiene será de un ciclo por segundo o hertz (1 Hz). Si aumentamos ahora la velocidad de giro a 5 vueltas por segundo, la frecuencia será de 5 ciclos por segundo o hertz (5 Hz). Mientras más rápido hagamos girar la manivela a la que está sujeta la pila, mayor será la frecuencia de la corriente alterna pulsante que se obtiene.

Seguramente sabrás que la corriente eléctrica que llega a nuestras casas para hacer funcionar las luces, los equipos electrodomésticos, electrónicos, etc. es, precisamente, alterna, pero en lugar de pulsante es del tipo sinusoidal o senoidal.

En Europa la corriente alterna que llega a los hogares es de 220 volt y tiene una frecuencia de 50 Hz, mientras que en la mayoría de los países de América la tensión de la corriente es de 110 ó 120 volt, con una frecuencia de 60 Hz. La forma más común de generar corriente alterna es empleando grandes generadores o alternadores ubicados en plantas termoeléctricas, hidroeléctricas o centrales atómicas.

FORMAS DIFERENTES DE CORRIENTE ALTERNA

De acuerdo con su forma gráfica, la corriente alterna puede ser:

  • Rectangular o pulsante

  • Triangular

  • Diente de sierra

  • Sinusoidal o senoidal

 

(A) Onda rectangular o pulsante. (B) Onda triangular. (C) Onda diente de sierra. (D) Onda sinusoidal o senoidal.

De todas estas formas, la onda más común es la sinusoidal o senoidal. 

Cualquier corriente alterna puede fluir a través de diferentes dispositivos eléctricos, como pueden ser resistencias, bobinas, condensadores, etc., sin sufrir deformación.

La onda con la que se representa gráficamente la corriente sinusoidal recibe ese nombre porque su forma se obtiene a partir de la función matemática de seno.

En la siguiente figura se puede ver la representación gráfica de una onda sinusoidal y las diferentes partes que la componen:

De donde:

A = Amplitud de onda
P = Pico o cresta
N = Nodo o valor cero
V = Valle o vientre
T = Período


Amplitud de onda: máximo valor que toma una corriente eléctrica. Se llama también valor de pico o valor de cresta.

Pico o cresta: punto donde la sinusoide alcanza su máximo valor.

Nodo o cero: punto donde la sinusoide toma valor “0”.

Valle o vientre: punto donde la sinusoide alcanza su mínimo valor.

Período: tiempo en segundos durante el cual se repite el valor de la corriente. Es el intervalo que separa dos puntos sucesivos de un mismo valor en la sinusoide. El período es lo inverso de la frecuencia y, matemáticamente, se representa por medio de la siguiente fórmula:


 

    T = 1 / F

 

 


Como ya se vio anteriormente, la frecuencia no es más que la cantidad de ciclos por segundo o hertz (Hz), que alcanza la corriente alterna. Es el inverso del período y, matemáticamente, se representa de la manera siguiente:

 

    F = 1 / T

 

 

MÚLTIPLOS DEL HERTZ Y VENTAJAS DE LA CORRIENTE ALTERNA

MULTIPLOS DE HERTZ (Hz) 

Kilohertz (kHz) = 103 Hz = 1 000 Hz
Megahertz (MHz) = 106 Hz = 1 000 000 Hz
Gigahertz (GHz) = 109 Hz = 1 000 000 000 Hz


VENTAJAS DE LA CORRIENTE ALTERNA


Entre algunas de las ventajas de la corriente alterna, comparada con la corriente directa o continua, tenemos las siguientes:

  • Permite aumentar o disminuir el voltaje o tensión por medio de transformadores.

  • Se transporta a grandes distancias con poca de pérdida de energía.

  • Es posible convertirla en corriente directa con facilidad.

  • Al incrementar su frecuencia por medios electrónicos en miles o millones de ciclos por segundo (frecuencias de radio) es posible transmitir voz, imagen, sonido y órdenes de control a grandes distancias, de forma inalámbrica.

  • Los motores y generadores de corriente alterna son estructuralmente más sencillos y fáciles de mantener que los de corriente directa.